
Overview

1 Overview of Computational Complexity Theory

The overall goal of Computational Complexity Theory is to understand the following: For
each computational task, what is the most “efficient” way to solve it? There are actually different
kinds of resources that you may want to be “efficient” about using; for example:

• Running time.

• Memory usage (or storage space).

• Parallelism (number of processors).

• Communication between different computing components.

• Energy.

• Number of random bits used.

• Number of qubits bits used. . .

The first two, time and space, are the basic resources we will focus on the most.

Example (The ideal time complexity for a problem). The computational problem called PATH

is: Given an input graph G, and two vertices s and t, decide if there is a path in G from s to

1

CMU CS455

t. (In practice, you might want to find the shortest path from s to t, but let’s start simple.) The
ideal outcome for the PATH problem, with respect to the resource of running time, would be:

• You find a fast algorithm for PATH.

• You prove that there is no faster algorithm for PATH.

The first task in this example, finding a fast algorithm, is the domain of Algorithms The-
ory (as studied in, e.g., Carnegie Mellon’s 15-451 course). The second task in the example,
proving that a faster algorithm does not exist, is the domain of Complexity Theory (this
course, 15-455). As it turns out, proving the impossibility of solving a certain task with a
certain running time is extremely difficult. Computer science researchers have arguably had
very little success in proving such impossibilities!

Even though we can only rarely prove “lower bounds” on the complexity of solving
various tasks, we still do our best. We set up the mathematical foundations of studying
algorithmic complexity, and explore the landscape of problems. One of the main tools we
have is reductions, which are used to relate the complexity of one problem to that of another.
You have probably seen reductions before in the context of NP-completeness, where they are
used to show that various problems — e.g., 3-COLORING — are no harder, and no easier,
than the SAT problem (up to polynomial running time factors). Of course, we famously don’t
know how hard it is to solve the SAT problem — this is the famous “P vs. NP” problem — but
at least we know that however hard it is, that’s also how hard it is to solve the 3-COLORING
problem.

A quotation from a 1988 Complexity Theory paper by Christos Papadimitriou and Mi-
halis Yannakakis illustrates this point. After showing a reduction from one problem to an-
other, they say that they’re

“Decreasing the number of questions. . .
without increasing the number of answers.”

The design of reductions plays a very important role in Complexity Theory. On the other
hand, reductions are simply algorithms; a reduction from problem A to problem B is like an
algorithm R that uses code that solves B as a subroutine within code that solves A. This
illustrates another quotation that will inform us throughout the course:

“Most of Complexity Theory is. . . Algorithms.”

2 Complexity versus Computability

You may already know something about Computability Theory (also known as Decidability),
the study of which computational tasks can be solved at all. As you probably know, one
answer is “not all of them”. For example, the HALTING problem is the following: Given as
input the source code M of a one-input function, as well as an input x, decide whether M(x)
halts (as opposed to going into an infinite loop). Alan Turing proved:

2

CMU CS455

Theorem (Turing’s Theorem). The HALTING problem is undecidable: there is no algorithm that
solves it correctly on every input.

Computational Complexity Theory is a sort of refinement of Computability Theory, where
we take the computational problems that can be solved, and then ask to what extent they
can be solved with limited resources. As a point of comparison, in Chapter (??) we’ll see
Time Hierarchy Theorem, which is an elaboration of Turing’s Theorem that takes into account
running-time resources. It shows, for example, that there are computational problems T
solvable in O(n3) time but not in O(n2) time. The “diagonalization” proof technique used in
Turing’s Theorem and the Time Hierarchy Theorem is still virtually the only technique we
know to prove impossibility results in Complexity Theory.

Unlike in Computability Theory, where most of the obvious big questions were solved
long ago, there are still many famous open problems in Complexity Theory. Often they
are concerned with whether or not two “complexity classes” are equal or not. Several of
these complexity class questions are shown, along with a very high-level “meaning” of the
question.

Example (Famous questions about complexity classes). • P = NP? Meaning: Is finding a
solution always as fast as recognizing a solution?

This is possibly the most famous problem in Computer Science, and is recognized as
one of the six most important problems in Mathematics in the Clay Institute’s $1 million
prize list.

• P = NC? Meaning: Is every sequential algorithm efficiently parallelizable?

• P = L? Meaning: Do efficient algorithms ever need to allocate memory? (Or are a constant
number of local variables always enough?)

• P = PSPACE? Meaning: If a problem is solvable with a reasonable amount of memory, is it
also solvable in a reasonable amount of time?

• P = BPP? Meaning: Can every randomized algorithm be efficiently made deterministic?

• P = QuasiLIN? Meaning: If a problem has an “efficient” (polynomial-time) algorithm, must it
have a truly efficient (O(n logc n)-time) algorithm?

Exercise. For exactly 1 of the 6 questions above, Complexity Theorists do know the answer.
The other five are all famous unresolved problems. Guess which one we know the answer
to!

Solution. The last one is false. It is known that P 6= QuasiLIN; this turns out to be a con-
sequence of the Time Hierarchy Theorem mentioned above. For example, there provably
exist decision problems (that is, computational tasks where the output is just yes/no) that
can be solved in quadratic time (that is, O(n2) steps) but not in “quasi-linear” time (that is,
O(n logc n) steps). �

For the 5 of the 6 questions above, although no one provably knows the answer, in each
case Complexity Theorists generally have a strong belief about what the answer is. When
faced with a complexity-theory question like, “Is X always possible?”, almost always the
default belief is “No”. So for the open questions above about whether one complexity class
equals another, the default guess is “No”. But. . .

3

CMU CS455

Exercise. For exactly 1 of the 6 questions above, Complexity Theorists generally believe the
answer is “Yes”. Guess which one we think is true!

Solution. P = BPP is generally believed to be true. It turns out there are pretty good reasons
to believe the following: For every decision problem (yes/no problem) that is solvable in
polynomial time using a random number generator, it is also solvable in polynomial time
without using a random number generator. The idea is that “good enough pseudorandom
number generators” should exist, and in an advanced Complexity Theory class you can see
a proof of this, assuming that something like P 6= NP is true. (More precisely, assuming the
SAT problem cannot be solved by circuits unless they have exponentially many gates.) �

3 Learning objectives

Why might you care to study Computational Complexity Theory?

• Some of you will go on to further deep and rigorous study of computation and Com-
puter Science. Then it goes without saying you will want to learn at least the basics of
Complexity Theory.

• For anyone studying Computer Science at the undergraduate level, it’s important to
work on thinking carefully and rigorously about computation.

• Anyone who does computer programming at all will often face the following situation:
You encounter a computational problem. You come up with a reasonably efficient al-
gorithm for solving this problem. But could there be a much better one? Studying the
basics of Complexity Theory gives you a framework and a set of tools to reason about
this.

4

	Overview of Computational Complexity Theory
	Complexity versus Computability
	Learning objectives

