Turing Machines

Let us recap some of the ideas from the previous chapter. Suppose you care about finding
paths in graphs using a computing device. The associated search problem would be: Given
(the encoding of) a graph G and vertices s, t, find a path from s to ¢ in G if one exists. The
associated decision problem is just to answer yes/no, does such a path exist? The equivalent
language is

Path = {(G, s,t) : thereis a path from s to ¢t in G}.

Our next step will to be define a notion of an algorithm/computing machine using the
concept of Turing Machines. You may have seen these before in the context of computability
theory. A Turing Machine M will take in an input string, do some computation (hopefully
without entering an infinite loop), and then either “accept” or “reject”. We'll say that M
solves or decides language L if M (z) accepts for all + € L and M (x) rejects for all z ¢ L.
(Turing Machines will also be capable of outputting strings, and therefore solving function
and search problems, too.)

Returning to the language Path:

* The computability question about this language is: Does there exist an algorithm M solving
Path? As you probably know, there is!

* The complexity question about this language is: Does there exist an algorithm M solving
Path while always using at most T resources?

CMU CS455

As we discussed, there are many kinds of resources to consider: running time, memory
usage, etc. This suggests the importance of formalizing algorithms in such a way that it is
very clear how to quantify their resource-usage.

The Path problem is pretty simple, and the efficiency of algorithms for it is well under-
stood. Here is another problem whose complexity is more difficult to analyze:

Circuit-Sat = {(C) : C'is an AND/OR/NOT circuit such that there exists a 0/1 setting
for its input wires such that its (single) output wire is 1.}

There does indeed exist a Turing Machine algorithm A that decides this language. However,
is there one that gives the correct answer on every input string x in at most poly(|z|) steps?

This question is equivalent to the famous P Z NP question, as we will see.

1 Why Turing Machines?

“Turing Machines are the worst formalization of Algorithms except for all
those other formalizations that have been tried.”

To begin Complexity Theory, we need to pick a programming language to be the official one
we use to define “algorithms”. Here are some programming languages one might consider
(and one could consider many, many others):

Python Turing Machine
Java (untyped) Lambda Calculus
C Post Machine
C++ Wang Machine
Haskell | P” (the theoretical precursor to BF)
Ruby Piet
Julia LOLCODE

Important. Notice that we have referred to Turing Machine as a “programming language”
here, whereas you might think of them as...“machines”. Or at least as some kind of non-
programming-language computing paradigm. But the right way to think of a Turing Ma-
chine is that it is a piece of code in a particular esoteric programming language.

In the left column above we see some “standard” programming languages. The Pro of
choosing one of these is that they are enjoyable to program in. The Con of choosing one
of these is that they are very hard to completely and rigorously define and reason about.
In the right column above we see some “esoteric” programming languages. (The first five,
Turing Machines through P”, are programming languages that have historically been used
for reasoning about the nature of computation. That last two are joke languages, often used

https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Post\OT1\textendash Turing_machine
https://en.wikipedia.org/wiki/Wang_B-machine
https://en.wikipedia.org/wiki/P''
https://en.wikipedia.org/wiki/Brainfuck
http://www.dangermouse.net/esoteric/piet/samples.html
https://en.wikipedia.org/wiki/LOLCODE
https://en.wikipedia.org/wiki/Esoteric_programming_language

CMU CS455

in, e.g., Code Golf.) The Pros and Cons of using these languages are just the opposite: they
are annoying to program in, but we can fully reason about the mathematically.

Remark. For the purposes of mathematical modeling, it’s natural to allow input strings of
any length, and also to allow computations that can use any amount of time and memory.
So if you were to imagine using, say, C as the official programming language for Complexity
Theory, you should imagine that it has access to a potentially unlimited amount of memory;
that is, you can malloc () as much as you want.

Remark. We also do not consider “interactive computation” in beginning Complexity The-
ory (though we will get to it a bit at the end of the course). So you shouldn’t think of algo-
rithms/code with input statements, interacting with a user. Instead, think of an algorithm
as a function, with some inputs and one returned value.

Although there are many potential choices for a programming language to define com-
putation, you may know that, from the point of view of computability, we can choose Turing
Machines “without loss of generality”. This is thanks to the Church-Turing Thesis:

Definition (Church-Turing Thesis). The Church—Turing Thesis is that any real-world algo-
rithm can be simulated by (i.e., compiled to) Turing Machines.

On the other hand, essentially all programming languages ever used are Turing-complete,
meaning that one can write a Turing Machine-interpreter in them. So from a computability
point of view, any programming language could be used to formalize computation. But
in addition to their mathematical simplicity, there are three main reasons we prefer Turing
Machines.

¢ The first reason is historical. Turing Machines were the first formalization of algorithms
broadly agreed to be universal. Turing himself gave a compelling physical argument
for this, by illustrating how Turing Machines can simulate human computers. Turing
Machines are also widely in textbooks on Computability and Complexity Theory, so it
is good to get to know them well just so you can read other papers and books.

* The second reason is that it is extremely easy to exactly define how many times steps
and memory cells a Turing Machine uses. This makes them particularly suitable for
Complexity Theory analysis. By comparison, in any high-level language like Python
or C, it would be difficult to adjudicate how many “times steps” a line of code should
count for.

* The third reason concerns one of the most important basic results in Complexity The-
ory, the Time Hierarchy Theorem (see Chapter (??)). The fundamental idea behind its
proof involves taking one’s programming language — call it T — and writing a T-
interpreter in the language T'. When we choose 7' to be Turing Machines, it means we
have to reason about a Turing Machine whose job is to simulate Turing Machines (usually

https://codegolf.stackexchange.com
https://softwareengineering.stackexchange.com/a/315924
https://lutter.cc/piet/
https://web.archive.org/web/20070711193759/http://forum.lolcode.com/viewtopic.php?id=51

CMU CS455

called a Universal Turing Machine). If we were to choose, say, the BF programming lan-
guage instead, we’d have to reason about BF code that simulates BF code; if we were to
choose Python, we’d basically have to think about how to write the exec() command
in Python. There is an obvious tradeoff here — the more powerful your programming
language is, the more enjoyable it is to write code in it... but also the more complicated
the task of producing a complete interpreter for it. It turns out that it’s much better
to go the route of making the programming language as simple as possible. Even the
presence of built-in loops (as in the BF language, for example) makes things annoying,
since it means you have to implement a stack data structure to simulate nested loops.

Returning to the Church-Turing Thesis, it says that for the purposes of deciding what is
computable at all, it is “without loss of generality” to study Turing Machines. But what about
for Complexity Theory, for the purposes of deciding what is computable efficiently? You
probably know that programming with Turing Machines is elaborate, painful, and repetitive.
Could it be that there are computational problems solvable “efficiently” in some high-level
language like C, but not solvable “efficiently” by Turing Machines? The answer turns out to
be “No, at least if you are somewhat relaxed about the notion of efficient.” For example, with
some effort you can define a limited “C-like pseudocode” programming language, and also
a precise running time model for it. Then:

Fact. An algorithm running in T time steps in “C-like pseudocode” can be compiled to a Turing
Machine algorithm running in O(T*) time steps.

Corollary (C-like pseudocode simulation). “Polynomial time” is the same concept for “C-like
pseudocode” and Turing Machines; any problem solvable in polynomial time using C-like pseudocode
can also be solved in polynomial time using Turing Machines.

We will talk about these kinds of simulations soon in Chapter (??). In basic Complexity
Theory we are not very worried about “polynomial factors”, and thus relatively early in
the course we will stop describing algorithms with Turing Machines (which is annoying)
and instead just describe them using C-like pseudocode. (Of course, in practical Algorithms
theory, one does care about polynomial factors, and the 4th-power slowdown in Corollary
(C-like pseudocode simulation) is not great. We will also discuss this later.) As you might
imagine, one can write a reasonably efficient interpreter for any high-level programming
language in C-like pseudocode. This leads us to:

Definition (Extended Church-Turing Thesis). The Extended Church-Turing Thesis is that any
real-world algorithm running in 7" “steps” can be simulated by a Turing Machine running
in poly(7") steps. Hence the classification of which computational problems are “solvable in
polynomial time” does not depend on the programming language used to formalize algo-
rithms.

Note. The Extended Church-Turing Thesis is actually strongly challenged by the possibility
of quantum computing!

https://www.youtube.com/watch?v=78tSf2R1huk&list=PLm3J0oaFux3YL5qLskC6xQ24JpMwOAeJz

CMU CS455

2 The syntax of Turing Machine code
Our official model of computation in this course is the one-tape Turing Machine with “2-

way-infinite tape”.

Note. As a warning, the popular textbook by Sipser uses a “1-way-infinite tape” instead.

We will first remind you of the “machine” picture of Turing Machines, before moving on
to emphasize a programming language “code” model. The picture looks like this:

-+-[ufufojofofofafofafaufufufufufufu]---

Information is stored on a “tape” in an infinite sequence of memory cells. Each cell can
hold one symbol from an alphabet. A real-world computer with 16GB of RAM can be
thought of as a sequence of cells numbered from 0 up to 234 — 1, each capable of holding
a “byte” (symbol in the range 0...255). By contrast, a Turing Machine tape is always as-
sumed to be infinite, and the symbols can come from any fixed alphabet. As mentioned,
we find it convenient to have the tape be ‘2-way-infinite”, meaning the cells are numbered
o, —3,—-2,-1,0,1,2,3,..., as opposed to 0,1,2,3,... on a “l1-way-infinite” tape. There is
also always a blank symbol, often denoted LJ, and “empty” cells are assumed to be initialized
to L. In particular, while a Turing Machine is running, almost all cells will contain LJ; only a
finite number of tape cells will store a non-blank symbol.

The “control” of a Turing Machine — the black box in the picture, that has states, transi-
tions, etc. — should be thought of as the source code for the Turing Machine. Unlike in most
high-level computational models where the code has “random-access” to the memory (it’s
right there in the name RAM!), the Turing Machine control has a simple pointer called the
“read /write head”, which always points to one memory cell. In each time step, the Turing
Machine control can take an action based on its current “state” as well as the symbol being
read by its read /write head. (These states are like “line numbers” in textual programming
languages.) The action involves writing a new symbol into the current cell, and then moving
the read /write head left or right. (The main reason we have decided on the 2-way-infinite
tape model is so we don’t have to handle the edge case of “what happens if the head is
moved left when it is already at the left edge of the tape”.)

It’s good to think of the “source code” (control) of a Turing Machine as a table that looks
something like this:

Here qo, g1, Gwaikright, etc. are “states” (like line numbers), and L and R stand for Left and
Right. There should be a row in the table for every (state, read symbol) pair. The above table
is just made up and does not come from any sensible Turing Machine. But the following is a
good Turing Machine example:

CMU CS455

state | read symbol | write symbol | move dir. | new state

q0 0 1 q1
q0 QwalkRight
q0 Gacc

q1
q1
q1

q2
q0
dcopy

C~roOo[C +~
CC X LC o
2Bl anlll~v Bl anlll~v B~ !

Example (Morphett simulator). Go to http://morphett.info/turing/turing.html to see and
interact with an example of Turing Machine code deciding the language

Palindromes = {¢,0,1,00,11,000,010,...} C {0,1}".

Turing machine simulator

[Back to home page]

This is a Turing machine simulator. To use it:

1. Load one of the example programs, or write your own in the Turing machine program area. See below for syntax.
2. Enter something in the 'Input' area - this will be written on the tape initially as input to the machine. Click ‘Reset' to initialise the machine.

3. Click on 'Run’ to start the Turing machine and run it until it halts (if ever). Click on 'Pause’ to interrupt the Turing machine while it is running. Alternately, click 'Step"
to run a single step of the Turing machine.

4. Click 'Reset' to restore the Turing machine to its initial state so it can be run again.

Tape
1001001

Current state|— Load or write a Turing machine program and click Run! Stets
o [}

Turing machine program Controls
4 ; This example program checks if the input string is a binary palindrome. Run Run at full speed
2 ; Input: a string of @'s and 1's, eg '1001001' ~—Pauss |
3 aus:
2 Step Undc
5 ; Machine starts in state 0. Reset
6 Initial input: 1001001
7 5 State 0: read the leftmost symbol
2 oo Advanced options
9 01 _ri1i
10 © _ _ * accept 5 Empty input
1 o) Load an example program
15 |; state 1o, 1i: find the rightmost symbol

33 |10 _ 120 Save to the cloud
14 1o * *r 1o

% |1 _ _12i
17 1 * *rai

16 |5 State 20, 2i: check if the rightmost symbol matches the most recently read left-hand symbol
20 @ 13
20 -

This is a wonderful online Turing Machine simulator produced by Anthony Morphett.

Example. Turing Machine Visualization (turingmachine.io) by Andy Li is another online
Turing Machine simulator; its graphics and editor are very beautiful, but Morphett’s is more
functional.

Remark. Note that both of the aforementioned online Turing Machine simulators have a
source code editing box, wherein you effectively enter the contents of a table, in text. Although
we will give a formal mathematical definition of Turing Machines and their computation
using “math objects”, it’s good to think them as pieces of code, expressible in text.

We can now give an “official” definition of what a Turing Machine is. This is like defining
the “syntax” of a programming language. In honor of this viewpoint, we'll start to call them
“TM algorithms”.

http://morphett.info/turing/turing.html
http://morphett.info/
http://turingmachine.io/
https://github.com/aepsilon

CMU CS455

Definition (Turing Machine, or TM algorithm). A Turing Machine, or TM algorithm, consists
of:

* Y, an input alphabet that does not contain the blank symbol LI.

* I, a tape alphabet that contains all the symbols in ¥, plus the blank symbol LU, plus it
may contain additional symbols.

* (), a finite set of states.

* Three specially designated states in Q): an initial state (often written qo), an accept state
(often written gacc), and a reject state (often written grej). The accept and reject state must
be different, but the initial state is allowed to be the same as one of them.

e A transition function § : Q" x I' — T' x {L,R} x Q, where Q" = Q \ {Gacc, ¢rej}- In other
words, J is a mapping from (state,symbol) pairs to (symbol,direction,state) pairs; in
other other words ¢ specifies the “table” or “source code”. The business with @' is
because we assume the TM algorithm doesn’t take any action when it gets to a halting
state.

Note. Other textbooks and sources may use slightly different definitions than Definition
(Turing Machine, or TM algorithm) above. As we’ll see in Chapter (??), it’s no big deal.

Example. Let’s return to the TM code solving Palindromes at Morphett.
e Its input alphabetis ¥ = {0, 1}.

* Its tape alphabet is I' = {0, 1, L, :,), (}, which has6 symbols in it. The last three sym-
bols illustrate that it’s fine to have more symbols in your tape alphabet than ¥ U {U} if
you wish, although Morphett’s code just uses them for drawing smileys :)

* By default, Morphett requires the initial state to be called “0”. (This is annoying be-
cause 0 is much more common as a tape symbol, and it’s not good to have states and
tape symbols with the same name. Luckily, if you go to “Advanced options” in Mor-
phett you can change this default.) Let’s rename this initial state to gop. With this re-
naming, the TM code’s state set is

Q = {qo, 1o, 1i,20,2i,3,4, accept, accept2, reject, reject2, halt-accept, halt-reject }.

These names are not too evocative; it would have been nicer if he’d given clearer
names.

¢ The initial state is qo, the accept state is halt-accept, and the reject state is halt-reject.

* The transition function ¢ is specified on the website and won’t be repeated here. But,
for example, the first two lines of the code specify that

8(qo,0) = (L, R, 10), §(qo,1) = (L, R, 17).

http://morphett.info/turing/turing.html

CMU CS455

Actually, Morphett’s Turing Machine syntax allows the head to stay put in a step (not move
Left or Right), which our definition does not allow. As mentioned, though, this is not a big
deal. Morphett also allows a bit more “syntactic sugar”, as you can see.

3 The semantics of Turing Machine code

We mentioned earlier that our model of Turing Machines would have a 2-way-infinite tape,
rather than the 1-way-infinite tape that some textbooks use. Here’s a question:

Exercise. Where in Definition (Turing Machine, or TM algorithm) is it reflected that we are
using a 2-way-infinite tape?

Solution. It’s a trick question, the answer is “nowhere”. This is because we have only defined
Turing Machines’ syntax, not their semantics. |

Having defined the syntax of TM code (what TM code is), we now define the semantics
(what it means; that is, how it computes).

Definition (Configuration). To follow the computation of TM code, you need to keep track
of 3 things:

¢ the tape contents;
* the position of the tape head;
¢ the current state.

Collectively these 3 things are called the configuration of the Turing Machine, and we package
them into a string. For this purpose, we need to think of the state set @) also as an “alphabet”
consisting of symbols (and — extreme technicality alert — these symbols should be distinct
from the symbols in the tape alphabet I'.

Precisely, at a given point in the TM code’s computation, the configuration is a string
C € (I'U Q) formed by:

* taking the tape contents;

* inserting the symbol for the current state into the string, just to the left of where the
head is pointing;

¢ trimming all the leading and trailing blanks (of which there are infinitely many).

Example. In the following TM execution snapshot —

CMU CS455

coo[ufufolafuafafolofafufufufufufuful---

— the configuration is the string 01 LI 1193001. (Here g3 is one symbol.)

Exercise. In the following TM execution snapshot —

co-pefufulufufuulafujuufufufujufuful. -

— what is the configuration?

Solution. It is the 2-symbol string qa1. [

Proposition. A string C € (I' U Q)* is a valid configuration if and only if: (i) it has exactly one
symbol from Q; (ii) and, it has no leading or trailing blanks.

Now we can define the semantics of TM computation.

Definition (Initial configuration). Given TM M and input string x, the initial configuration
is defined to be qox. (Here g is the symbol for M’s initial state, and the string = has been
concatenated on the end.)

Definition (Halting configuration). Configuration C is said to be a halting configuration if it
contains either of the symbols qacc Or grej

Definition (NextConfig). Given a non-halting configuration C for TM M, we define NextConfig,,(C)
to be the configuration C’ obtained (informally) by “doing one step of M”. Formally:

* First one expresses C' as uagbv, where ¢ is the unique state symbol in C, a and b are
the symbols preceding and succeeding ¢ (respectively), and v and v are the substrings
preceding a and succeeding b (respectively). The strings u and v may equal the empty
string ¢, but if either a or b “does not exist”, it is treated as L.

e Then (" is set to be the following string, trimmed of any leading/trailing blanks it may
have:
uq'adv if §(q,b) = (d,L,q’), or wadg'v if§(q,b) = (d,R,q).

CMU CS455

Remark. This definition is kind of technical and annoying to verify. However we’ve made
it explicit just to fully convince you that TM computation can be formally defined entirely in
terms of string manipulation.

Definition (Computation trace). The computation trace of TM M oninputx € X*is Cy, C1, Co, . ..

where Cj is the initial configuration, Cy = NextConfig,,(Cy), Co = NextConfig, (C1), etc.,
either until a halting configuration C; is reached, or else indefinitely.

Definition (Halts/accepts/rejects/loops). If the computation trace of M on x terminates
with some halting configuration C;, we say that M (z) halts. In this case, we furthermore say
either that M (x) accepts or M (x) rejects, depending on whether C; contains the symbol gacc
OF Grej- On the other hand, if the computation trace of M on z is indefinite, we say that M (x)
loops (or does not halt).

A great virtue of the TM model is that it’s easy to define “running time” exactly:

Definition (Running time of a TM on an input). Say that M (x) halts, and the computation
trace is Cp, C1, . .., Cy. Then we say that M runs in time t on input x.

We really hate when some TM code M has the possibility of looping, even on a single
input. In this course, we basically ignore all such M, deeming them to not even be real
algorithms.

Definition (Decider). A TM M is a decider if M (z) halts for all inputs x € X*.

Definition (Deciding a language). We say that a TM M decides (or solves) a language L if:
e M is a decider;
* M(xz) accepts forallx € L;
* M(x) rejects for all z ¢ L.

Example (TM deciding Or.). Define the language
Or = {z € {0,1}" : x contains at least one 1}.

We call this language “Or” because it contains the strings whose Boolean-OR is True. There
is some simple TM code M that decides Or. The high-level idea is that A/ simply scans the
input from left-to-right: if it ever finds a 1 it halts and accepts; if it ever encounters a blank
symbol, it knows it has reached the end of the input without finding a 1, so it halts and
rejects. Indeed, M can use its initial state ¢p to do all of this work, so besides this it only
needs gacc and gyj states. The Morphett code is here:

10

CMU CS455

; This program decides OR = {x : x contains a 1}, a subset of {0,1}x*.
; The initial state is called qO.

q0 _ _ L haltReject

g0 1 1 R haltAccept
q0 0 O R g0

On input 2 = 00010, the computation trace of M on z is:

Cy = q000010
C1 = 0qo0010
Cy = 009,010
C3 = 000go10

Cly = 0001GaccO

We see that M (z) accepted, with a running time of 4.
On input = 00, the computation trace of M on z is:

Co = 9000
C1 = 0q,0
Cs = 00qp
C3 = 0qrej0

We see that M (z) rejected, with a running time of 3.
Having seen these examples you should be able to convince yourself that indeed M de-
cides the language Or.

This completes our description of the semantics of TM computation for languages/decision
problems. A nice thing about TMs is that we can also think of them as producing output
strings, so we can also use them to solve function/search problems too.

Definition (TM outputting a string). We say that TM M outputs a string y € X* on input
x € ¥* if its final configuration is qaccy. We say M computes f : ¥* — X* if for all z € ¥,
M (z) outputs the string f(z).

Remark. Note that here we required the TM to kind of “clean up” at the end of its computa-
tion by blanking out all the non-output, and moving the tape head to the left of the output.
Usually insisting on this is not a big deal.

Exercise. Go to http://morphett.info/turing/turing.html and carefully study the Parenthe-
ses checker example program. It illustrates some nice “TM programming tricks” that involve
using extra symbols in the tape alphabet effectively.

11

http://morphett.info/turing/turing.html

CMU CS455

Exercise. Go to http://turingmachine.io/ and carefully study the Binary increment example
program. It illustrates TM code that solves a function problem. Also, the “binary increment”
operation is an important one for Complexity Theory, since generally one of the first things

“"__ 7

we often want TM code to be able to do is count up “n”, then number of symbols in the
input.

4 Summary of the 1-tape TM model of computation

Pros:
* 100% rigorously definable.
¢ Running time (and memory usage) is 100% clear.
¢ Turing motivated it by physical reality.
* It’s simple.
¢ It can simulate all known programming languages (this is the Church-Turing Thesis).
* It’s not too hard to write a TM-code-simulator using TM code.
Cons:
* It’s very painful to program in; it’s like an “esoteric programming language”.

¢ The running times it gives are often polynomially worse than they “should be”.

12

http://turingmachine.io/

	Why Turing Machines?
	The syntax of Turing Machine code
	The semantics of Turing Machine code
	Summary of the 1-tape TM model of computation

