
Programming in TM

1 The definition of time complexity

As mentioned at the end of the last chapter, one virtue of Turing Machines is that there is a
completely clear definition of the running time a TM M takes on an input x (Definition (??).)
We would now like to define the running time of the algorithm M itself.

Important. A key idea in Complexity (and Algorithms) Theory is that we measure how the
running time of algorithm M scales as a function of the input length, and in doing this we look
at the worst-case input for each input length.

Definition (Running time complexity). Let M be a decider algorithm. The running time (or
time complexity) of M is the function, TM : N→ N, defined by

TM (n) = max
inputs x
|x|=n

{time M takes on input x}.

1

CMU CS455

Example. Recall the TM M deciding the language Or from Example (??). It is easy see that
the number of steps M(x) takes to halt is{

|x|+ 1 if x does not contain a 1

m if, otherwise, the first 1 in x is in the mth position.

Thus M ’s running time is the function TM (n) = n + 1.

Exercise. Ignoring the silliness of drawing smileys at the end, what is the exact running time
function for the Morphett’s TM solving Palindromes?

Hint. Try to determine it empirically, first, by playing around in the simulator!

2 Simulations of one computational model by another

In the last chapter we described the “455 official” formal model of algorithms: 1-tape TMs
(with 2-way-infinite tape). We also mentioned that there are several variants and alterna-
tives that other pedagogic sources use (1-way-infinite tapes, multi-tape TMs, “C-like pseu-
docode”, etc.) By the Extended Church–Turing Thesis, we expect all these variants to be
able to simulate each other with at most “polynomial slowdown”. In this chapter we will
demonstrate some examples of this. In particular, we will explain some things about this
simulations shown in this diagram:

Figure 1: The slowdowns when simulating one kind of algorithmic model by another.

In the above diagram, the meaning of an arrow from model X to model Y and labeled
O(T 2) is: An algorithm written in model X can be “simulated by” (or “compiled to”) an
algorithm written in model Y , with at most “quadratic slowdown”; i.e., if the running time
function in model X was T (n), then the running time function in model Y is O(T (n)2).

2

CMU CS455

Similarly for the labels O(T log T) and T . In fact, an arrow labeled T means there is no
slowdown at all; a 1-tape TM with Γ = {0, 1,t} is a special case of a 1-tape TM, so there
is no need for any simulation/compilation, and similarly a 1-tape TM is a special case of a
multi-tape TM. We’ve circled “1-tape TM” in red because it’s our “official” model; we also
highlighted in red the arrow about simulating multi-tape TMs on 1-tape TMs because we’ll
spend the most time talking about it.

Although what we’ll do in this chapter — messing around with the “esoteric program-
ming language of TM” — can be tedious, there are some good reasons to do it at least once:

• You’ll get practice “programming in TM”.

• You’ll get explicit evidence for the Extended Church–Turing Thesis.

• You’ll learn about two easier-to-program models: multi-tape Turing machines, and C-like
pseudocode (known to professional algorithmicists as the Word RAM model). Since we
don’t care about polynomial factors too much in this course, we may prefer to present
algorithms in these models later in the course.

• You’ll see an example of the adage from Chapter (??): “Most of Complexity Theory
is. . . Algorithms.”

3 TM programming tricks: head moves

Proposition (Turing Machines where the head can Stay put). Consider an extended TM model
where — when specifying what happens for each state/read-symbol combination — we may allow
the tape head to “S”tay put, in addition to the usual “L”eft and “R”ight. (In fact, the Morphett
interpreter allows this, with the symbol *.) A TM M in this model can be simulated by a TM M ′ in
the usual model with at most factor-2 slowdown; that is, with TM ′(n) ≤ 2TM (n).

Proof. We think of the “table of code” for M , which may now have some “S” moves in it, in
addition to the standard “L” and “R” moves. The idea is to convert each “S” move to an R
followed by an L. We’ll need to also introduce some extra states for this. We give a “proof by
example”, assuming the tape alphabet is Γ = {0, 1,t}. Suppose M ’s code contains

qi, 0 7→ 1,S, qj

meaning that when M is in state qi and reading symbol 0, it writes a 1, keeps the tape head
in the same place, and moves to state qj . To form the standard TM M ′, we replace this line
of code with

qi, 0 7→ 1,R, qgo-L-then-j

where go-L-then-j is a new state. We then add the following code:

qgo-L-then-j, 0 7→ 0,L, qj

qgo-L-then-j, 1 7→ 1,L, qj

qgo-L-then-j,t 7→ t,L, qj

3

http://morphett.info/turing/turing.html

CMU CS455

It is evident that M correctly simulates M ′, and that M(x) runs in at most twice as many steps
as M ′(x) for all inputs x (as any “S” moves by M ′ get replaced by two moves in M).

Proposition (Turing Machines with head double-moves). Consider an extended TM model
which allows its head to move left twice or right twice in one step — call these moves LL and RR.
Then again, a TM M in this model can be simulated by a TM M ′ in the usual model with at most
factor-2 slowdown; that is, with TM ′(n) ≤ 2TM (n).

Proof. This is similar to Proposition (Turing Machines where the head can Stay put). In fact,
reusing the “qgo-L-then-j” states/code from that proof, we just need to convert a double-move
line in M like

qk, 1 7→ 0,LL, qj

to
qk, 1 7→ 0,L, qgo-L-then-j

Again, the correctness and running time bound should be clear.

4 TM programming tricks II: alphabet manipulation

A common trick in TM programming is “marking” a tape cell. This means to put a “dot” on
a tape cell to help the TM find this particular cell later in the algorithm. Of course, there is no
direct mechanism for a TM to “mark” a cell, but what you can do is introduce a “marked”
version of each tape symbol. So for example, if your tape alphabet is Γ = {0, 1,t}, but you
wanted to write code that used the “marking” technique, then the first thing you would do
is change the tape alphabet to

Γ = {0, 1,t, 0• , 1• ,t•}.

(We have 6 symbols here; e.g., we consider 0
•

to be one symbol, despite the way it looks.)

Note. A tape alphabet must always have exactly one “blank” symbol. In the above example
with 6 symbols, the blank symbol is still t. The “marked blank” t• is treated as just another
weird symbol.

A good example of this technique is if one is trying to simulate a TM with 1-way-infinite
tape by a (standard) TM with 2-way-infinite tape. At first you might think there is nothing to
do, but there is one catch. In the usual semantics of 1-way-infinite tape TMs, if the TM tries
to move Left when its tape head is already at the leftmost edge of the tape, then instead it just
stays put. For a TM with 2-way-infinite tape to simulate this, it has to “remember” where
the “left edge” of the simulated 1-way-infinite tape is, in order to duplicate this effect. It will
do this with the technique of “marking” the initial tape head position. (It’s also convenient
we already discussed the “Stay put” tape head move in Proposition (Turing Machines where
the head can Stay put).)

4

CMU CS455

Proposition (Simulating a 1-way-infinite tape). A 1-way-infinite tape TM M can be simulated
by a 2-way-infinite tape TM M ′ (that allows Stay moves for its head) at the expense of 1 extra time
step.

Proof. Assume for simplicity that the tape alphabet of M is Γ = {0, 1,t}. Then M ′ will use
the marked version of this tape alphabet, of size 6. The code of M ′ will be mostly the same
as that of M , with a few differences. First, assuming the initial state of M is called q0, we will
rename it in M ′ to qorig0, we will make a new state in M ′ called qnew0, and the initial state
of M ′ will be defined to be qnew0. The role of qnew0 will be to mark the initial tape cell; its
definition will be:

qnew0, 0 7→ 0
•
, S, qorig0

qnew0, 1 7→ 1
•
, S, qorig0

qnew0,t 7→ t
•
, S, qorig0

Next, M is not yet completely defined, because we need to say what it does when it reads
a marked symbol. For each “line” (transition) in M , we make a duplicate of it where we
change both the read symbol and the write symbol to its marked version. So far, this would
simply make M “ignore” the mark on the tape, albeit keeping it in place. Finally, though, we
change all lines that involve moving “L”eft while reading a marked symbol to have the tape
head “S”tay put instead. This precisely simulates the effect in M that when the tape head
tries to move Left of the left tape edge, it instead stays put.

Proposition (“Stretching” the input). There is TM code that takes as input a string x ∈ Σ∗ and
“stretches” it, meaning inserts a blank symbol between each character. For example, it replaces input
string x = abaa with a t b t a t a on its tape. The running time is O(|x|2) steps.

Proof. The idea in, e.g., the case of input x = abaa, is to achieve

abaa → a t baa → a t b t aa → a t b t a t a

Starting from the leftmost symbol, the TM code moves the head right once, shifts the entire
remaining string one cell to the right, moves the head left until it hits the first blank, and
repeats. Here is the explicit Morphett code, in the case that the input alphabet is Σ = {a, b}:

; This program "spreads" its input. It assumes the input alphabet is {a,b}.

q0 _ _ L halt ; empty input

q0 a a R qStartShift

q0 b b R qStartShift

qStartShift _ _ L halt

qStartShift a _ R qCopyA

5

CMU CS455

qStartShift b _ R qCopyB

qCopyA _ a L qFindBlankOnLeft

qCopyA a a R qCopyA

qCopyA b a R qCopyB

qCopyB _ b L qFindBlankOnLeft

qCopyB a b R qCopyA

qCopyB b b R qCopyB

qFindBlankOnLeft a a L qFindBlankOnLeft

qFindBlankOnLeft b b L qFindBlankOnLeft

qFindBlankOnLeft _ _ R q0

To see the running time claim, each “shift” takes O(|x|) steps, and there are no more than
|x| shifts; hence the total number of steps is indeed O(|x|2).

Exercise. The explicit TM code in Proposition (“Stretching” the input) leaves the tape head
at the right end of the spread input. How can it be modified to return the tape head to the
first symbol in the spread input?

Solution. The idea is to move the tape head to the left until two consecutive blanks are found.
Explicitly, we can replace the “halt” with a transition to a new state called qLookForTwoBlanks,
and add the following TM code:

qFindBlankOnLeft a a L qFindBlankOnLeft

qFindBlankOnLeft b b L qFindBlankOnLeft

qFindBlankOnLeft _ _ R q0

qLookForTwoBlanks a a L qLookForTwoBlanks

qLookForTwoBlanks b b L qLookForTwoBlanks

qLookForTwoBlanks _ _ L qLookForAnotherBlank

qLookForAnotherBlank a a L qLookForTwoBlanks

qLookForAnotherBlank b b L qLookForTwoBlanks

qLookForAnotherBlank _ _ RR halt

Note that the very last line in this table uses the “double-Right” trick from Proposition
(Turing Machines with head double-moves). �

The next proposition shows that Turing Machines don’t really need a tape alphabet with
more than 2 symbols (besides the blank). Of course, if the input alphabet Σ has more than 2

6

CMU CS455

symbols, then the tape alphabet Γ must include all of those symbols, plus the blank. But in
the very common case where Σ = {0, 1}, one can always get away with Γ = {0, 1,t}, with
little slowdown.

Proposition (Tape alphabet reduction). Let M be a Turing Machine with input alphabet Σ =
{0, 1} and any tape alphabet Γ. Then M can be simulated by a TM M ′ using just the tape alphabet
Λ = {0, 1,t}. If the running time of M is T (n), then the running time of M ′ is O(T (n)) + O(n2).

Proof. The idea is to encode the symbols of Γ with symbols from Λ = {0, 1,t}. We will give
the proof when |Γ| ≤ 9; we’ll explain the extension to |Γ| > 9 at the end. For example,
suppose M uses the following 8-symbol tape alphabet:

Γ = {0, 1, 0̂, 1̂, #, #̂, t̂,t}.

Let’s fix an encoding each of these symbols by 2 symbols from Λ; say,

0 7→ 00, 1 7→ 01, 0̂ 7→ 10, 1̂ 7→ 11, # 7→ 0t, #̂ 7→ t0, t̂ 7→ 1t, t 7→ t t .

(We have one unused encoding in Λ2 here, namely t1. That’s okay.) We remark that any
encoding like this is fine so long as t ∈ Γ gets encoded by tt ∈ Λ2. We’ll explain why this
is important later.

The idea is that M ′ will simulate M but with each pair of consecutive cells on the M ′

tape being a “virtual” single cell on the tape of M . This works because for M ′, a pair of
consecutive cells can store something from Λ2, which can indeed encode something a single
cell on the tape of M as described above.

The simulating M ′ has two tasks: Initially, it needs to take the input x ∈ Σ∗ of length
n = |x|, and re-encode it as a string in Λ2n. Then, it can begin to simulate M , with the
two-cells-represent-one-cell trick.

For the task of re-encoding the input, the first step for M ′ will be to “stretch” the input
x as in Proposition (“Stretching” the input). Now there is space for the encoded version of
the input to be written. After this stretching, M ′ will do a subroutine that walks along the
stretched input from left to right, reading the original input symbols and writing in their
encoded versions. At the end M ′ will walk the tape head back to the left end of the input.
Notice that M ′ can recognize the beginning and the end of the stretched input by the presence
of two consecutive blanks. This is also a good time to point out why it is important that t ∈ Γ
needs to be encoded by tt ∈ Λ2; with this convention, all the infinitely many leading and
trailing blanks on the tape initially are “automatically” encoded in the new alphabet.

Finally, M ′ has to simulate the run of M with the new one-symbol-of-Γ-in-two-cells en-
coding. This relatively straightforward; each line of M gets converted to a few lines that:
read both the current symbol and its neighbor, write into these two cells the encoding of the
symbol that M would write, and move the head two cells in the direction that M would
move its head.

This completes the discussion of the simulation. As for the running time, the “stretching”
portion of M ′ takes O(n2) steps as discussed in Proposition (“Stretching” the input); the re-
encoding part takes O(n) steps. Finally, when M ′ simulates M , each single step of M gets

7

CMU CS455

converted to a constant O(1) number of steps in M ′. Hence the simulation part takes O(T (n))
time. Thus the overall running time of M ′ is O(T (n)) + O(n2).

We conclude with a “proof by example” to explain how to handle the case when the
tape alphabet Γ of M has more than 9 symbols. If, for example, |Γ| = 25, then you can use
encode the symbols of Γ using three symbols from Λ = {0, 1,t}, and then have virtual cells
of width 3. Alternatively, you can first reduce the alphabet Γ to an alphabet Λ1 of size at most
5 by using virtual cells of width 2, exactly as above. Then you can reduce Λ1 to Λ = {0, 1,t}
by using the above simulation again. Notice that with either solution, the running time will
still be O(T (n)) + O(n2), but the constants hidden inside the O(·) will be bigger.

Note. As mentioned, if the running time of M is T (n), then this simulation will have running
time O(T (n)) + O(n2). If T (n) is already at least n2, then the new running time is O(T (n))
so there is no real slowdown; just a constant factor. On the other hand, if T (n) ≈ n is linear
time, then the new running time is O(n) + O(n2) = O(n2); this is quadratically worse, and
is the reason that in Figure (Simulations of one computational model by another) we labeled
the arrow from “1-tape TM” to “1-tape TM with Γ = {0, 1,t} by “O(T 2)”.

Note (Sublinear time). Continuing the above train of thought, you might wonder what if,
say, T (n) = O(

√
n). In this case, the running time of the simulator M ′ is O(

√
n) + O(n2) =

O(n2), which is “quartically” worse than the original running time O(
√
n). But actually, as

you may show on the homework, you can give an alternate simulator M ′ that has running
time O(1). (!!) The same applies whenever T (n) = o(n). . .

Exercise. Show that TM code M written for a 2-way-infinite tape with running time T (n) can
be simulated by TM code M ′ written for a 1-way-infinite tape with running time O(T (n)).

Hint. Γ′ = Γ× Γ, and. . .

8

CMU CS455

5 TM programming tricks III: multi-tape to 1-tape

In this section we’ll show the “main theorem” of the chapter: That a multi-tape TM running
in time T (n) can be simulated by a 1-tape TM running in time O(T (n)2). A reason that we’re
particularly interested in this result is that it’s much more convenient to program in “multi-
tape TM” than it is to program in “single-tape TM”, and in fact running times on multi-tape
TMs are much more comparable to running times in “C-like pseudocode”.

But before we show this theorem, we should first define multi-tape TMs! We will just
give a sketch here, and leave the formal definition to you. Below is a picture of a 3-tape TM.
All tapes hold one symbol from the tape alphabet Γ, as usual. There are 3 read/write heads
that the TM controls, one for each tape. The input is written on the first tape as usual, and
all other tapes are initially blank. There is still just one “control”, and it bases its action in
each time step on its state as well as all 3 symbols being written. Based on this, it writes a
new symbol to each tape, moves each head Left or Right, and changes state. In fact, as long
as we’re being liberal, let’s also allow multi-tape TMs the “S”tay move for tape heads, as in
Proposition (Turing Machines where the head can Stay put). So a typical part of the “table”
in a 3-tape TM’s code might look like:

state head 1 head 2 head 3 head 1 head 1 head 2 head 2 head 3 head 3 new
read read read write move write move write move state

q0 0 0 0 1 L t R 0 S q1
q0 0 0 1 1 R 1 S 1 R q3
...

...
...

...
...

...
...

...
...

...
...

Exercise. Formally define (the syntax of) k-tape Turing Machines, for general k ≥ 1.

Exercise (k-tape TM semantics). Formally define the semantics of how k-tape Turing Ma-
chines compute. You will need to invent the notion of a k-tape TM “configuration”, and may
need to make slightly different design choices than those made for 1-tape TM configurations.

Let’s now begin to think about how we might take, say, a 3-tape (call it M3) and simulate
it with a 1-tape TM (call it M1). The first idea is that we will store the contents of M3’s three
tapes consecutively on M1’s tape, with a # punctuation mark separating them. Furthermore,
we will also keep track of the three head positions of M3 on M1’s tape using the “marking”
technique from Section (TM programming tricks II: alphabet manipulation). As an example
of this, suppose that at some instant in M3’s execution, the situation is as depicted in Figure
(TM programming tricks III: multi-tape to 1-tape). Then at the analogous instant in M1’s
simulation, its single tape will have the following contents:

#101
•
011#0 t 111 t 0•#0110111 t t1•#

We will call this the “compression” of M3’s tapes; it’s similar to writing down the configu-
ration of M3 (as you hopefully defined it in Exercise (k-tape TM semantics)), except that the
state of M3 does not appear anywhere on the tape. Instead, in the simulation, M1 will keep

9

CMU CS455

Figure 2: An example 3-tape TM.

track of M3’s state using its own state. Note also that M1’s head position will not directly
correspond to any head position from M3. The tape head of M1 will roam freely around the
tape in the effort to simulate M3.

Note (Compressed tape bound). Assuming the running time of M3 is T (n), it means that on
inputs of length n, M3 only has enough time to write at most T (n) symbols on each of its 3
tapes. In turn, this means the compressed M1 tape always has at most 3T (n) + 4 = O(T (n))
symbols on it.

We now describe the simulation of M3 by M1.

Initialization Component. The first stage of M1’s operation will be to convert its initial
tape (which, by definition, just has the input x written on it) into the “compressed” version
of what M3’s initial tape would be. That is, if for example x = input, then the first thing M1

must do is convert its tape contents to

#i
•
nput# t• # t• #

It is not too hard to design a bunch of dedicated states at the “beginning” of M1’s code to
accomplish this (i.e., to write in the extra #’s and marked symbols). If the input length is n,
then this stage of M1’s code will take O(n) steps (mostly for walking to the end of the input
to write the #t• #t• # at the end). Let’s assume this first stage finishes by walking back to the
left end of the tape; this takes another O(n) steps.

Head scan Component. Now the simulation can begin. A major component of simulating
one step of M3 is having M1 figure out the 3 symbols under M3’s tape heads. Once M1

figures this out, since it will also be “remembering” M3’s current state using its own state,
M1 will know all it needs to know to update its compressed tape contents according to one

10

CMU CS455

step of the simulation. For this part of the simulation, roughly speaking the TM will have
the head scan rightward, noticing and “remembering” the marked cell (using state), until it
comes to the first #. At this point, e.g., M1 would be in a state called something like

q-M3-in-state-q4-and-head1-reading-1-and-scanning-right-for-head2.

In this state, M1 keeps scanning rightward, noticing and “remembering” the marked cell in
the second segment of the of the compressed tape. For example, if it has found the marked
cell but not yet the second # symbol, it might be in a state called

q-M3-in-state-q4-and-head1-reading-1-and-head2-reading-0-and-scanning-right-for-hashtag.

Again, having found the second # symbol, M1 will continue to the right until it comes to
the third marked symbol. Once it finds it, M3 can move on to the next component of the
simulation. At this point, it will have just transitioned into a state called something like

q-M3-in-state-q4-and-head1-reading-1-and-head2-reading-0-and-head3-reading1.

Note that there is a rather enormous proliferation of states in M1; among others, we need a
couple of states for every quadruple of M3-state-and-3-tape-symbols! Also observe that the
time for this “Head scan Component” is bounded by the length of M1’s tape contents, which
by Note (Compressed tape bound) is O(T (n)).

Simulate one step Component. Having worked out what is under all 3 tape heads, and
“knowing” what state M3 is in, M1 can now update its compressed tape. This component
is somewhat similar to the Head scan Component. M1 first brings the tape head to the left
end of the tape. Then it scans rightward until it hits the first marked symbol. At that point
it can: (i) change the symbol underneath the mark, as dictated by what M3 would write on
its first tape; (ii) move the mark one cell to the left, or to the right, or not at all, depending on
whether M3’s first tape head would move L, R, or S. There is a catch here — what happens
if M3 wants to move the tape head outside the boundaries of the two # symbols? We will
mention how to deal with this catch below. For now, let’s not worry about it and go on.
Having handled M3’s first tape, M1 can scan rightward again till it comes to the next #, and
then repeat for the second tape: find the marked symbol, replace it, and adjust the mark. The
same goes for the third tape. Finally, M1 can change the state of M3 that it is “remembering”,
again according to how M3 would change state. It would then head leftward to find the first
#, starting out in a state called something like

q-M3-now-in-state-q7-and-scanning-leftward-for-third-hashtag.

The overall time to execute this single step of the simulation is again proportional to the
length of M1’s tape, which by Note (Compressed tape bound) is O(T (n)).

The Catch — overrunning the delimiters. Let’s return to the issue of what happens if M3

wants to move a tape head onto a blank outside the boundaries of its current tape contents.
In this case, M1 would not have sufficient “room” on its compressed tape. The solution is
simply to open up a cell of space. For example, suppose M3 is trying to move its 2nd tape

11

CMU CS455

head to the right, and this would spill the marker onto the 3rd # marker on M1’s tape. In
this case, M1 enters into a subroutine that copies remainder of the tape one cell to the right
(similar to the subroutine in the “stretching” algorithm, Proposition (“Stretching” the input)),
opening up a new cell on its tape, into which it places a t• . Note that M1 will have to use
“state” to remember for which tape it’s opening up a new tape cell, and whether it’s opening
it up on the left or the right. As for running time, note that shifting the tape contents doesn’t
take time more than twice the length of the tape, which we know is O(T (n)). Thus even if
M1 has to handle this “catch” all 3 times, the total amount of time it adds to one step of the
simulation is at most O(T (n)). So the time for a single simulation step is still O(T (n)).

Summary. In the way described above, M1 simulates M3 step by step. On inputs of length n,
we saw that each step of M3 takes O(T (n)) time for M1 to perform, and M3 has O(T (n)) to-
tal steps. Since the Initialization Component took time O(n), this means the total running
time of the simulation is O(T (n)2) + O(n). This is just O(T (n)2) (unless T (n)�

√
n, but we

can ignore this case for the reasons described in Note (Sublinear time)). This completes our
sketch of the proof of the following theorem:

Theorem (Simulating multi-tape TMs by 1-tape TMs.). For any k, a k-tape Turing Machine M
with running time T (n) can be simulated by a usual 1-tape TM M ′ with running time O(T (n)2).
(The constant hidden in the O(·) depends on k.)

6 Utility of multi-tape TM code

It is significantly more convenient to program multi-tape TMs than it is to program single-
tape TMs. Happily, Theorem (Simulating multi-tape TMs by 1-tape TMs) tells us that any-
thing we can solve efficiently with a multi-tape TM we can also solve “almost” as efficiently
with our official model of 1-tape TMs. (Well, if you count quadratic slowdown as “almost”.)
Let us give an example illustrating this.

Proposition. There is a 2-tape TM deciding the Palindromes problem with running time O(n).

Proof. (Sketch.) Recall that on input, say, amanaplan, a 2-tape TM starts out like this: The

idea of the TM is:

• Walk the 1st tape head to the end of the input, while keeping the 2nd tape head in
place. This is O(n) time.

12

CMU CS455

• Walk the 1st tape head back to the beginning of the tape, while at the same time copying
the symbols being read onto the 2nd tape. This is also O(n) time, and now the TM’s
tape contents would look like this:

• Walk the 1st tape head to the right, and the 2nd tape head to the left, comparing sym-
bols as they go. If ever two symbols are distinct, reject; otherwise, if the tape heads
reach blanks at the same time and all symbols matched, accept. This is also O(n) time.

This O(n) running time for solving Palindromes seems more “realistic”, at least in com-
parison with the kinds of algorithms/running-times we’re used to in algorithms courses.
Recall in Example (??) we considered a 1-tape TM solving the Palindromes problem, and it
took O(n2) time. In fact, this is optimal for 1-tape TMs, as Frederick C. Hennie showed in
1965. (The proof is not too hard; it would take half a lecture, or a bit less.)

Theorem. (Hennie, 1965.) Any 1-tape TM solving Palindromes requires at least Ω(n2) running
time.

Since Palindromes is solvable on a 2-tape TM in O(n) time, Hennie’s result shows that
the quadratic slowdown that Theorem (Simulating multi-tape TMs by 1-tape TMs) gives for
converting 2-tape TMs to 1-tape TMs can’t be improved upon.

13

	The definition of time complexity
	Simulations of one computational model by another
	TM programming tricks: head moves
	TM programming tricks II: alphabet manipulation
	TM programming tricks III: multi-tape to 1-tape
	Utility of multi-tape TM code

