
Time Complexity and Universal TMs

1 Our first complexity classes

Definition (Complexity class). A complexity class is any collection of languages. Usually,
though, we focus on complexity classes whose definition is of the form “all languages com-
putable using at most such-and-such resources”.

Definition (The TIME complexity class). Let t : N → R≥0 be a function (e.g., t(n) = n2 or
t(n) = n log n). We define the following complexity class:

TIME(t(n)) = {languages L : ∃ a TM deciding L in O(t(n)) time}.

Example. Palindromes ∈ TIME(n2).

1

CMU CS455

Note. Notice that the O(·) is built into the definition. This is because constant factors are not
too meaningful in time complexity (for example, you can generally halve the running time
of any algorithm by squaring its tape alphabet size — think about it!). This convention also
makes the notation neater.

Notation. The definition of TIME(t(n)) depends quite significantly on our choice of 1-tape
TMs as the official model for algorithms. Had we chosen, e.g., 2-tape TMs, then we would
have had Palindromes ∈ TIME(n). Because of this strong model-dependence, we will not
focus too much on very precise time classes like TIME(n2); instead we will prefer ones that
are insensitive to polynomial time changes, like “P” which we define next.

Let’s now introduce what is perhaps the most important complexity class, P, which cap-
tures polynomial-time solvable decision problems:

Definition (The complexity class P).

P =
⋃
c∈N

TIME(nc) = all languages decidable in polynomial time by a Turing Machine.

Happily, the complexity class P is very “robust” with respect to the choice of model for
algorithms. By the simulations mentioned in Chapter (??), any language decidable in poly-
nomial time by a multi-tape TM, or “C-like pseudocode”, etc., is also solvable in polynomial
time by a 1-tape TMs (and vice versa). Indeed, the Extended Church–Turing Thesis tells us
this is also true for any “reasonable” model of computation. Thus (unlike with TIME(t(n))),
the set of languages in P does not change if you change your official computational model
from 1-tape TMs to some other reasonable model.

Of course in the real world, and in the theoretical study of algorithms, we certainly care
about the distinction between O(n)-time algorithms (fantastic!) and O(n log n)-time algo-
rithms (very good!) and O(n2)-time algorithms (kind of okay) and O(n10)-time algorithms
(almost useless in practice!). But in our study of complexity theory, we won’t worry too
much about these distinctions: the definition of P is very elegant, it serves as a reasonable
robust notion of “time-efficient algorithms”, and any language that is not even in this liberal
class P is almost surely not solvable efficiently in practice.

In Chapter (??) we will study some of the many problems that are in P. But in this chapter
we will begin to think about the question: what kind of problems are not in P?

2 Turing’s Theorem, and a time-bounded variant

We should know at least one decision problem not in P: namely, Halts, the Halting Problem.
It is not solvable by any algorithm, let alone a polynomial-time algorithm! What’s more
interesting, though, is to ask if there is some problem that is solvable by an algorithm in
finite time, but is not solvable by any algorithm with polynomial running time. Indeed,
there is; over the course of the next two chapters, we will come to prove the following:

2

CMU CS455

Theorem (Special case of Time Hierarchy Theorem). There exists a language L ⊂ {0, 1}∗ such
that:

• L ∈ TIME(3n);

• L 6∈ P; indeed, L is not even in the class TIME(1.1n).

(To explain this “indeed’: Note that if L were in P, it would be in TIME(nc) for some constant c; but
then also L would be in TIME(1.1n), because O(nc) ≤ O(1.1n) for any c.)

Theorem (Special case of Time Hierarchy Theorem) is a special case of the Time Hierar-
chy Theorem, which we will prove in the next chapter. The conceptual content of the Time
Hierarchy Theorem is:

More time lets you solve more languages.

Theorem (Special case of Time Hierarchy Theorem) just promises that a language L ∈
TIME(3n) \ TIME(1.1n) exists, but in fact we will be able to show a reasonably natural deci-
sion problem that has this property. One such problem is — roughly speaking — “given as
input a Turing Machine M and a string w, simulate M(w) for 2n steps”. It should be reason-
ably intuitive that this task can be done in O(3n) time, but cannot be done in O(1.1n) time.
However this task is not actually a decision problem/language, so we will have to work
harder to prove what we want.

The idea of this the “impossibility” half of the Time Hierarchy Theorem is that there is no
clever way of telling what a given piece of code M will do on a given input w; it seems you
can only try simulating M(w) to find out. This is the exact same idea as in Turing’s proof
of the unsolvability of the Halting Problem, and it will be a good warmup to first recall this
proof before we get to its “time-bounded variant”, the Time Hierarchy Theorem.

For recapping Turing’s Theorem, let us make two small technical shifts. First, for simplic-
ity we will restrict attention to simulating Turing Machines that use input alphabet {0, 1} and
tape alphabet {0, 1,t}. This is no big deal; as we know, larger input alphabets Σ can always
be re-encoded using {0, 1}, and Proposition (??) showed us that we can always reduce a large
tape alphabet Γ to one that just has Γ = {0, 1,t}. Second, instead of considering the Halting
Problem, it will be slightly more convenient to consider the TM Acceptance Problem.

Definition (Standard-alphabet TM). A standard-alphabet TM is one where the input alphabet
is Σ = {0, 1} and the tape alphabet is Γ = {0, 1,t}.

Definition (TM acceptance problem). The TM acceptance problem is the language

Accepts = {〈M,w〉 : M is a “standard-alphabet” TM, w ∈ {0, 1}∗, and M(w) accepts}.

3

CMU CS455

Remark. Here we are assuming we have a scheme for encoding Turing Machines by strings.
This shouldn’t be considered unusual; a Turing Machine is just another kind of mathematical
object, and we assume we have encoding schemes for all mathematical objects. Morphett’s
source code format for TMs is a perfectly good way of encoding TMs by the ASCII alphabet.
Very shortly we will see another reasonable encoding of standard-alphabet TMs.

A slight variant on Turing’s Theorem on the Halting Problem shows that there is no algo-
rithm that decides the language Accepts. Relatedly, at the end of the next chapter we will be
able to show:

Theorem (BoundedAccepts2• not in P). One language L that works in Theorem (Special case
of Time Hierarchy Theorem) — i.e., a language that is in TIME(3n) but not TIME(1.1n) — is the
following variant of Accepts:

BoundedAccepts2• = {〈M,w〉 : M(w) accepts within 2|w| steps}.

3 Universal Turing Machines

Before getting to Turing’s Theorem and the Time Hierarchy Theorem, it will be good to
think about the “positive” aspect of Theorem (BoundedAccepts2• not in P), the fact that
BoundedAccepts2• can be decided in O(3n) time. The basic idea here is that we can write
reasonably efficient code whose job is to simulate a given Turing Machine. When this code
is itself written in the TM programming language, it is called a Universal Turing Machine.

Definition (Universal Turing Machine). A universal Turing Machine U is a Turing Machine
that takes as input 〈M,w〉, where M is a standard-alphabet TM and w ∈ {0, 1}∗, and which
simulates M running on w. Here “simulates” means that U(〈M,w〉) loops if M(w) loops, and
otherwise comes to the same output (accept/reject state, or actual string output) as M(w).

Remark. It’s reasonable to instead require that a universal Turing Machine be able to simu-
late a TM using any input alphabet and tape alphabet, not just the “standard alphabets”. But
it will be slightly more convenient for us in this chapter to stick to standard-alphabet TMs.

In short, a universal TM is a TM interpreter, written in the TM programming language.
Turing’s original paper explicitly showed the following:

Theorem (Universal TM exists). (Turing, 1936.) There exists a universal Turing Machine.

This theorem should not come as great surprise these days; we can certainly imagine
writing a TM simulator in a high-level programming language, and then the Church–Turing
Thesis assures us we could convert this high-level code to TM code. For the purposes of
proving the Time Hierarchy Theorem, though, we will need to get into some of the low-level

4

http://morphett.info/turing/turing.html

CMU CS455

details of universal Turing Machines. The reason is that we will need to know about the
precise time-efficiency of simulating TM code on a TM.

Actually, most any way of designing a universal TM will produce one that’s “reasonably
efficient”, by which we mean one where the running time of U(〈M,w〉) is no more than
poly(|〈M,w〉|) times the running time of M(w). A good way to see this, and to understand
the proof of Theorem (Universal TM exists), is to study an explicit universal Turing Machine.
Luckily, the Morphett website includes a very nice one, written by David Bevan. . .

Exercise. Go to http://morphett.info/turing/turing.html and load the example program
called “Universal Turing machine”, by David Bevan. Study this example carefully, and also
study its documentation.

The gist of how U(〈M,w〉) operates is that at all times, U keeps on its tape a modified
version of the configuration of M(w). The modification is that not only does U insert the
current state symbol into the tape contents just to the left of the head, U in fact inserts all
of 〈M〉 (the encoding of M) just to the left of the head. Given this idea, it is moderately
straightforward to see how U needs to operate, but do check out the documentation!

Notice that in the documentation for Bevan’s universal TM U , there is a careful descrip-
tion of the encoding scheme for TMs (with tape alphabet fixed to Γ = {0, 1,t}). In particular,
it is assumed that the states are simply numbered 1, 2, 3, . . . , s for some s. Since the tape al-
phabet always has size 3, it means there are always exactly 3s “lines” of code. The encoding
of these lines is fairly straightforward, but with one somewhat clever angle: the “new state”
at the end of each line is not encoded by its number, but rather by its offset from the current
state encoded (effectively) in unary.

As mentioned in the documentation, the encoding size of an s-state machine is O(s2)
symbols. As is also mentioned, if M(w) halts in t steps, then U ’s simulation of M(w) takes
time O(s3 · t). In fact, with careful inspection, you can see that the time can also be bounded
by O(|〈M〉|2 · t). We record this as a theorem below.

Remark. An extremely pedantic point: Our definition of “universal Turing Machine” spec-
ifies that the input is 〈M,w〉, meaning a string in {0, 1}∗; however Bevan’s U uses a TM
encoding involving a dozen or so symbols. Of course, if we wanted, we could replace each
of these symbols with some four-symbol encoding over {0, 1}, and slightly rework Bevan’s
U to deal with this. In practice, this would make Bevan’s code much more annoying to read
and understand. In theory, however, let’s pretend that we indeed do this. Then Bevan’s U
will itself be a standard-alphabet TM.

Theorem (Time-efficient universal Turing Machine). There exists a (standard-alphabet) univer-
sal Turing Machine U with the guarantee that if M(w) halts in t steps, then U ’s simulation takes time
O(|〈M〉|2 · t).

Exercise. Think about extending the TM encoding format to allow for any size input and tape
alphabets. It’s reasonable to insist that the input alphabet symbols are numbered 0, 1, 2, . . . , a

5

http://morphett.info/turing/turing.html
http://morphett.info/turing/turing.html
http://tinyurl.com/M269resources

CMU CS455

and the tape alphabet symbols are numbered 0, 1, 2, . . . , b (where b > a, with symbol b being
the “blank” symbol).

4 Universal Turing Machines with a clock

Let’s return to the “positive half” of Theorem (BoundedAccepts2• not in P), which says
that the language BoundedAccepts2• can be solved in O(3n) time. Given the time-efficient
universal Turing Machine described in Theorem (Time-efficient universal Turing Machine),
you might think this is easy to prove, but actually there is still a catch. Suppose we try
to decide whether 〈M,w〉 ∈ BoundedAccepts2• just by running our universal TM U on
〈M,w〉. . .

Proposition. Suppose U is given as input 〈M,w〉, and write n = |〈M,w〉| for the length of this
input. Suppose that M(w) does in fact accept within 2|w| steps. Then U will correctly detect this
after it itself runs for at most O(n2 · 2n) ≤ O(3n) steps.

Proof. We use Theorem (Time-efficient universal Turing Machine). Since n = |〈M,w〉|, we
infer both |〈M〉| ≤ n and |w| ≤ n. Thus M(w) takes at most 2|w| ≤ 2n steps, and U(〈M,w〉)
takes at most O(|〈M〉|2 · 2n) ≤ O(n2 · 2n) ≤ O(3n) steps.

The trouble is, what if M(w) does not accept within 2|w| steps? If this is because M(w)
rejects within 2|w| steps, we are still okay; U will detect this within O(n2 · 2n) steps. But what
if M(w) simply doesn’t halt at all within 2|w| steps? What if M(w) happens to halt in 22

|w|

steps? We don’t want to blithely allow U to keep running for 22
|w|

steps. . .

Important. To successfully decide BoundedAccepts2• in O(3n) steps, we’ll want to have
U(〈M,w〉) cut off its simulation after 2|w| steps. That is, U will need to “time” itself, or “clock”
itself.

Intuitively, it shouldn’t be too hard to implement this extra feature into U , but we do have
to do a little work.

Theorem (Alarm-clocked universal Turing Machine). There exists an alarm-clocked universal
Turing Machine U with the following properties: It takes as input 〈t,M,w〉, where the new input
t ∈ N is a time-bound (encoded in base-2, as usual). U correctly simulates M(w) up until M(w)
halts or until M(w) has run for t steps, whichever comes first. Furthermore, U(〈t,M,w〉) itself runs
in at most O(|〈M〉|2 + log t) · t steps.

6

CMU CS455

Proof. Recall that our basic universal Turing Machine U works by keeping the TM description
〈M〉 on the tape, in the position of M ’s tape head. The alarm-clocked variant will also keep
a “countdown-timer” written in base-2, stored just to the left of 〈M〉 on the tape. Initially,
this timer will be t. Recall that when U simulates one step of M(w), it does O(|〈M〉|2) steps
of work walking around the TM description 〈M〉 to figure out exactly what M(w) is doing
on the step, and to update things appropriately. Now, in addition, U will decrement the
countdown-timer by 1 on each step of M(w). This takes an additional O(log t) time per
step of M(w), since the encoding length of the countdown-timer is at most |〈t〉| = O(log t).
Finally, if the countdown-timer ever reaches zero, U will know to halt the simulation.

With an alarmed-clocked universal TM U in hand, we can now show that BoundedAccepts2•
is solvable in O(3n) time. There is still a little work to be done, though: our code will need to
compute the time-bound 2|w| to give to U .

Lemma (2n is time-constructible). The function f : N → N defined by f(m) = 2m is computable
by TM code C with the following property: on input 〈m〉, the code C takes O(m logm) steps.

Important. In Lemma (2n is time-constructible), contrary to what we almost always do, we
did not describe C’s running time as a function of its input length, |〈m〉| (which is approxi-
mately log2m). Rather, we described it in terms of the numerical value m itself. Following
our usual conventions, the running time function of C would be TC(n) = 2n ·n. Please make
sure to understand this point thoroughly!

We will omit the proof of Lemma (2n is time-constructible) here because it is virtually
identical to Problem 1 on Homework 2. That problem basically asks for code which, given m,
outputs m copies of a certain symbol in time O(m logm). If we choose that symbol to be “0”,
and then we stick a “1” on the left at the very end of the algorithm, we get an algorithm that
produces the string 10m, which is exactly the base-2 representation 〈m〉 of 2m, as desired!

Theorem. BoundedAccepts2• ∈ TIME(3n).

Proof. We describe TM code running in O(3n) time that correctly decides whether a given
input 〈M,w〉 is in the language BoundedAccepts2• . Let n denote |〈M,w〉|, so |〈M〉| ≤ n and
|w| ≤ n. We describe the stages of our code:

Compute n stage. The first stage is to have the algorithm determine and write down ` :=
|w|, in base-2. Note that the value of ` is at most n, and that the number of symbols required
to write it down, |〈`〉|, is O(log n). We omit further description of this stage, as it is very
similar to Problem 4 on Homework 1; as you showed there, this stage can be done in time
O(n2) (or time O(n log n) with some cleverness).

7

CMU CS455

Compute 2|w| stage. The next stage is to compute and write down the time-bound t =
2|w| = 2`, using Lemma (2n is time-constructible) as a subroutine (with m = `). As that
Lemma says, the time to do this is O(` log `) ≤ O(n log n), and the number of symbols needed
to write down 2|w| is basically log2(2

|w|) = |w| = ` ≤ n.

Simulation stage. Now that we have gotten t = 2|w| written down on the tape (in base 2),
we can use the alarm-clocked universal TM U from Theorem (Alarm-clocked universal Tur-
ing Machine) with input 〈t,M,w〉. This indeed lets us correctly tell whether M(w) accepts
in at most 2|w| steps (or else whether it rejects/doesn’t halt). As Theorem (Alarm-clocked
universal Turing Machine) says, this use of U takes time

O(|〈M〉|2 + log t) · t ≤ O(n2 + |w|) · 2|w| ≤ O(n2 + n) · 2n ≤ O(n2 · 2n) ≤ O(3n).

We see that the overall time for the three stages is O(n2)+O(n log n)+O(3n) ≤ O(3n).

Important. Again, the issues surrounding the “time to compute the time bound 2|w|” can
be a bit confusing, so please carefully study the proof above, always bearing in mind the
distinction between the size of a number m, and the size of the binary string representing m
(which is basically log2m).

This gives us the “positive half” of Theorem (BoundedAccepts2• not in P). In the next
chapter we will prove the “negative half”, that BoundedAccepts2• 6∈ TIME(1.1n).

For the general Time Hierarchy Theorem, we would ideally like to prove an analogue of
Theorem (BoundedAccepts2• not in P) for “any” two running time functions with a good
gap between them, not just 3n versus 1.1n. Let’s look again at our proof of Theorem (),
the “positive half” that BoundedAccepts2• ∈ TIME(3n), and imagine trying to general-
ize. Specifically, suppose we consider the analogous language BoundedAcceptsf(•) for some
function f(•) other than 2•.

Remark (Simulation stage running time). Intuitively, the main work is the “Simulation stage”.
For our example f(n) = 2n, this stage actually took O(n2 · 2n) time, which we somewhat
sloppily upper-bounded by 3n. For general f(n), this main part will take at most O(|〈M〉|2 +
log f(n)) · f(n) ≤ O(n2 + log f(n)) · f(n) time, which you should think of as “a little bit more
than f(n) time”. In the next two remarks, we’ll look at whether the other two “initialization
stages” will come in at less than f(n) time.

Remark (Compute n stage running time). The “Compute n stage” took O(n2) time. As
mentioned on Problem 4 of Homework 1, you can get this down to O(n log n) time with some
cleverness. But you can’t do better than that, and you can’t really eliminate this stage. Since
the “Simulation stage” is going to take in the neighborhood of≈ f(n) steps, this “Compute n
stage” will not be excessive provided f(n) ≥ n2 (or f(n) ≥ n log n if you’re using the clever
solution), but it will be a bottleneck for smaller f(n) functions.

Remark (Compute f(|w|) stage running time). The “Compute f(|w|) stage” took O(n log n)
time in our case of f(m) = 2n. Notice that this is much much less than the ≈ f(n) time for
the “Simulation stage”, so it’s no bottleneck, at least in the case of f(n) = 2n. On the other
hand, notice that we needed a whole lemma, Lemma (2n is time-constructible), to establish
that f(|w|) could be computed in O(n log n) time.

8

CMU CS455

This last remark leads us to a technically-important-but-fairly-annoying point for the
study of the Time Hierarchy Theorem. If we want to show a fact like “BoundedAcceptsf(•)
is decidable in not much more than f(n) time” for a general function f(•), we can run into
problems if computing f(•) itself takes an inordinately long amount of time.

To take an extremely ridiculous example, suppose we decided to care about the following
truly insane running time function:

f(n) =

{
nsin(n) if the TM M whose encoding 〈M〉 is the same as 〈n〉 halts on input ε,

22
2n

if the TM M whose encoding 〈M〉 is the same as 〈n〉 loops on input ε.

Then we would not be able to prove “BoundedAcceptsf(•) is decidable in not much more
than f(n) time”, because how would we do the “Compute f(|w|) stage”? (To do this, you’d
have to solve the Halting Problem, which can’t be done in any time bound.)

Luckily, no one in their right mind would ever decide to care about the ridiculous func-
tion f(n) above! Instead a normal person is interested in “normal” time functions, like
f(n) = n2 or f(n) = 10n3 or f(n) = 3n or whatever. And it turns out that the analogue
of Lemma (2n is time-constructible) holds for all these “normal” functions: you can compute
f(n) in (much) less than f(n) time.

Definition (Clockable functions). Let f : N → R≥0. We say that f is a clockable function
if there is a 1-tape TM that computes the function m 7→ df(m)e in O(f(m)) steps. (Super-
technicality: We put the dceilinge in there just because functions like f(m) = m logm or
f(m) = 1.1m technically don’t output integers.) For future simplicity, we will also insist that
clockable functions have to be increasing, meaning f(n + 1) ≥ f(n) for all n.

Important. “Clockable” is 455 Slang; the official formal terms for (variations of) this defini-
tion are “time-constructible”, “proper complexity”, or “honest”.

Example. The function f(m) = 2m2 is clockable.

Proof. First, this function is increasing. The main thing we want to show that there is a TM
which, given 〈m〉, outputs 〈2m2〉 in O(2m2) = O(m2) time. Note that the input length is
|〈m〉| ≈ log2m, and the output length is |〈2m2〉| ≈ log2(2m

2) = 2 log2m + 1. So we have
O(m2) time to do some relatively basic arithmetic on numbers with O(logm) digits; in ef-
fect, we have exponential time (as a function of the input length). This is way more time than
we need. As you learned in earlier classes, basic arithmetic on `-bit numbers can be done
in poly(`) time; we can just do the “grade school multiplication algorithms” in C-like pseu-
docode, or on a multi-tape Turing Machine, in O(`2) time, and this at worst might translate
into O(`8) time on a one-tape Turing Machine. (In fact, it’s not hard to show that binary
multiplication can be done in O(`3) time on a one-tape Turing Machine; take a look at the
example code on Morphett.) So we can produce 〈f(m)〉 = 〈2m2〉 from 〈m〉 in O((logm)8)
time easily, which is much less than the O(m2) time we’re allowed.

Fact. Virtually any “normal”-looking function f(m) with f(m) ≥ logm is clockable. In particular,
any function that looks like f(m) = ma for a > 0 a rational number, or like f(m) = ma logbm
for a, b > 0 rational, or cm for c > 1 rational, or m!, or any sum or product of these kinds of
functions. . . they’re all clockable. In this course, we promise to never try to “trick” you by talking
about non-clockable functions, and you may take for granted that any normal-looking function is
clockable unless we direct you otherwise.

9

http://morphett.info/turing/turing.html

CMU CS455

Putting together Remark (Simulation stage running time), Remark (Compute n stage run-
ning time), and Remark (Compute f(|w|) stage running time), we conclude:

Theorem (BoundedAcceptsf(•) time complexity). Let f be a clockable function. Then there is a
universal TM Uf which, on input 〈M,w〉 with n = |〈M,w〉|, simulates M(w) correctly for up to
f(|w|) steps in time

O(n log n) + O(|〈M〉|2 + log f(n)) · f(n) ≤ O(n2 + log f(n)) · f(n).

For f(n) ≤ 2n
2 , this can be bounded by O(n2·f(n)); hence for such f we have BoundedAcceptsf(•) ∈

TIME(n2 · f(n)).

Proof. The O(n log n) time is for (cleverly) computing |w|; but note that this is smaller than
the last term O(n2 · f(n)). Also, the time to compute f(|w|) is at most O(f(n)) since f is
clockable; this is also smaller than the last term O(n2 ·f(n)). The O(|〈M〉|2+log f(n)) ·f(n) is
the time to run the alarm-clocked universal TM, and the inequality is because |〈M〉| ≤ n.

Example. For example, if f(m) = n3, then BoundedAcceptsf(•) ∈ TIME(n5).

10

	Our first complexity classes
	Turing's Theorem, and a time-bounded variant
	Universal Turing Machines
	Universal Turing Machines with a clock

