
The Time Hierarchy Theorem

1 Sample consequences of the Time Hierarchy Theorem

The above “intuitive” statement of the Time Hierarchy Theorem is imprecise; it has scare-
quotes around the “any” time bound, and it doesn’t say mathematically what “slightly
more/less” means. Before we get into precise details, though, let us give some example
consequences of the theorem (which do follow from the precise versions, as you will see).

Example (THT Example 1). The Time Hierarchy Theorem applied with f(n) = 2n implies
the result mentioned in the last chapter, that there is a language L ∈ TIME(3n) such that
L 6∈ TIME(1.1n). Recalling that TIME(1.1n) is a set of languages, and TIME(3n) is a superset
of TIME(1.1n), we can write the Time Hierarchy Fact in a couple of ways using set-theory
notation:

TIME(1.1n) (TIME(3n); or, ∃L ∈ TIME(3n) \ TIME(1.1n).

Example (THT Example 2). In the full version of the Time Hierarchy Theorem, taking f(n) =
n1.5 will allow us to conclude that

TIME(n) (TIME(n2);

1

CMU CS455

in other words, there is a language solvable in quadratic time but not solvable in linear time.
Using f(n) = n2.5, we can get

TIME(n2) (TIME(n3);

that is, there is a language solvable in cubic time but not solvable in quadratic time. More
generally, using f(n) = nc+.5 for any constant c ∈ N+, we can get

TIME(nc) (TIME(nc+1).

This last example tells us that

TIME(n) (TIME(n2) (TIME(n3) (TIME(n4) (TIME(n5) (· · ·

We have a hierarchy of time-complexity classes here, each one containing strictly more lan-
guages than the previous one. This kind of thing is why it’s called the Time Hierarchy Theo-
rem.

2 THT: many tiers of quality

There is no one standard formulation of the “Time Hierarchy Theorem”. The reason is that
you can seek different tiers of quality (455 Slang) in terms of:

(a) how badly you want to allow “any” time function f(n);

(b) how “slight” is “slightly” when you prove L is solvable in “slightly more” than f(n)
time, but not in “slightly less” than f(n) time.

The harder you work in your proof, the higher quality tier “Time Hierarchy Theorem” you
can get. The thing is, it’s already fairly challenging just to get a “C-tier” Time Hierarchy The-
orem, and it’s not clear the effort/reward tradeoff for getting higher-tier versions is favorable
for a course like 15-455. We will more or less end up proving a “B-tier” version, stating an
“A-tier” version, and alluding to an “S-tier” version (the highest tier).

Here is an “A-tier” version, which is a (slightly worse) version of what you will see in
most textbooks:

Theorem (A-tier quality Time Hierarchy Theorem). Let f(n) be a clockable function with n log n ≤
O(f(n)). Then there exists a language L such that

• L ∈ TIME(f(n) · log f(n));

• L 6∈ TIME(f(n)
log f(n)).

This version is more than enough to give the conclusions discussed in Example (THT
Example 1) and Example (THT Example 2). For example, as discussed in the last chapter,
f(n) = n2.5 is a perfectly normal and clockable function, and n log n ≤ O(n2.5). Note also
that log f(n) = 2.5 log n. Thus Theorem (A-tier quality Time Hierarchy Theorem) tells us that

TIME(n2.5

logn) (TIME(n2.5 log n),

2

https://www.youtube.com/TierZoo

CMU CS455

which is a very fine result. Since n2 ≤ O(n2.5

logn) and also n2.5 log n ≤ O(n3), we can immedi-
ately derive the weaker but simpler-looking

TIME(n2) (TIME(n3).

Similarly, we can get the whole hierarchy

TIME(n) (TIME(n2) (TIME(n3) (TIME(n4) (TIME(n5) (· · ·

Exercise. Let 1 < a < b be any real constants (e.g., a = 1.1, b = 3) . Show that TIME(an) (
TIME(bn).

Hint. Use Theorem (A-tier quality Time Hierarchy Theorem) with f(n) = cn, where c is some
rational number strictly between a and b.

Remark. Although the “A-tier” Time Hierarchy Theorem is very sharp, it can still be im-
proved. It’s a little-known fact that there are even stronger (“S-tier”) versions that allow you
to show, for example, that

TIME(n3) (TIME(n3 · (log n).0001).

This is really angels-dancing-on-the-head-of-a-pin territory though, and arguably not too
insightful. Remember, these running times are on the 1-tape TM model, where we already
have moderate weirdness like Palindromes requiring O(n2) time (whereas it’s O(n) for more
usual algorithmic models). So it’s really splitting hairs to be concerned with logarithmic
running time factors for 1-tape TMs, let alone sub-logarithmic factors.

Proving the A-tier Time Hierarchy Theorem requires too many hacks/tricks, and we will
be quite content with the following version, which we will prove:

Theorem (B-tier quality Time Hierarchy Theorem). Let f(n) be a clockable function with n2 log n ≤
O(f(n)). Then there exists a language L such that

• L ∈ TIME(n2 · f(n) · log f(n));

• L 6∈ TIME(f(n)
log f(n)).

The two differences here are: (a) f(n) has to be at least n2 log n, as opposed to just n log n;
and, (b) we have an extra n2 factor in the upper bound on L’s time complexity. Still, these
things are not too bad. Suppose we take f(n) = nc+.5, where c ≥ 2 is an integer constant
(these are clockable functions). Then we conclude

TIME(n
c+.5

logn) (TIME(nc+2.5 · log n) =⇒ TIME(nc) (TIME(nc+3).

3

CMU CS455

So we can get a “hierarchy” like

TIME(n2) (TIME(n5) (TIME(n8) (· · · ,

which still nicely illustrates the sentiment that “more time allows algorithms to solve more
languages”. Also:

Exercise. Show that the B-tier Time Hierarchy Theorem is still enough to derive ∃L ∈ TIME(3n)\
TIME(1.1n), and more generally TIME(an) (TIME(bn) for any constants 1 < a < b.

Remark. These two versions of the Time Hierarchy Theorem merely say that a language L
satisfying the properties exists. Another way to improve these results is to name a specific
language satisfying the properties. For example, referring to the previous exercise, it would
be nice to know that L = BoundedAccepts2• works; i.e., that

• BoundedAccepts2• ∈ TIME(3n);

• BoundedAccepts2• 6∈ TIME(1.1n).

We will indeed show this at the end of the chapter.

Before we prove the B-tier version of the Time Hierarchy Theorem, we will warm up by
proving D-tier and C-tier versions. In fact, all of these versions of the Time Hierarchy The-
orem can be seen as extensions of Turing’s Theorem on the unsolvability of the Halting/TM-
acceptance problem. So we will review that first.

3 Turing’s Theorem

Let us recall Turing’s proof of the undecidability of the Accepts problem. (As we discussed
in earlier chapters, we may assume without loss of generality that all TMs mentioned are
standard-alphabet TMs.)

Theorem. (Turing, 1936.) The language Accepts is undecidable; in other words, there does not exist
any decider TM A for Accepts.

Proof. The proof is by the “diagonalization” method. We assume for the sake of contradiction
that TM code A deciding Accepts exists. We now describe “diagonalizing TM code” D. In
brief:

D(〈M〉) runs A(〈M, 〈M〉〉) and does the opposite.

In more details:

4

CMU CS455

• The TM code D first interprets its input string in {0, 1}∗ as the encoding of a TM M .
(Recall that by GUIDO, every possible string input to D counts as a TM. Garbage strings
are interpreted as some default standard TM, say the one that immediately rejects every
input.)

• D then copies its input string over, adding a little punctuation if necessary, thereby
arranging for the string 〈M, 〈M〉〉 to be on its tape. This will be an input for the TM A.

• D now enters into a subroutine that contains the exact “code” of A, except with A’s
accept/reject states swapped.

Notice that D is definitely a decider TM: it halts on every input, because A (by assumption)
is a decider and thus halts on every input.

We can now obtain a contradiction by considering the question of whether D(〈D〉) ac-
cepts or not. When D is given 〈D〉 as input, it ends up running A(〈D, 〈D〉〉) and doing the
opposite. But by assumption, A(〈D, 〈D〉〉) gives the correct answer to the question, “Does
D(〈D〉) accept?” So we have a contradiction; if D(〈D〉) accepts then it means that D(〈D〉)
does not accept, and vice versa.

Therefore we conclude that the initial assumption was false; the TM A deciding Accepts
cannot exist.

4 D-tier quality Time Hierarchy Theorem

In the proof of Turing’s Theorem, D(〈M〉) took a hypothetical Accepts-decider A, ran it
on 〈M, 〈M〉〉, and did the opposite. Now, this is a fantasy, because we ultimately know
there is no Accepts-decider A. However, as we saw last chapter in Theorem (??), there is a
BoundedAccepts2• decider, call it B, with running time O(3n). (Just to recall, this B takes as
input 〈M,w〉, computes 2|w|, then uses an alarm-clocked universal TM to see if M(w) accepts
within 2|w| steps.) What happens if we just repeat Turing’s proof using B?

Theorem (D-tier quality Time Hierarchy Theorem). There exists a language L such that

• L ∈ TIME(3n);

• there is no (standard-alphabet) TM M deciding L with running time TM (n) ≤ 2n.

Proof. We will say what L is in a roundabout way. We will first describe a decider TM
called D. Then we will say,

L is whatever language is decided by D; that is, L = {x : D(x) accepts}.

(As you will see, the L we produce might be called something like Doesn’tBoundedAcceptSelf2• .)
As suggested, the proof is very similar to Turing’s, but using the decider B for BoundedAccepts2• .

TM algorithm D takes as input the description of a TM M and does the following:

D(〈M〉) runs B(〈M, 〈M〉〉) and does the opposite.

5

CMU CS455

Let L be the language decided by D. The algorithm D basically copies its input string
(time: O(n2)) and then does B, which as we know takes time O(3n). Thus the running time
of D is O(3n), so L ∈ TIME(3n).

To complete the proof, suppose for the sake of contradiction that there is some (standard-
alphabet) TM M deciding L with running time TM (n) ≤ 2n. Then for any input w:

(i) M(w) gives the same answer as D(w) (because M and D decide the same language, L).

(ii) Furthermore, M(w) gives this answer in at most 2|w| steps.

To get a contradiction, we consider the input w = 〈M〉:

(a) M(〈M〉) = D(〈M〉), because of (i) above.

(b) D(〈M〉) 6= B(〈M, 〈M〉〉), by definition of D.

(c) B(〈M, 〈M〉〉) = M(〈M〉) provided M(〈M〉) runs in at most 2|〈M〉| steps, by definition
of “B decides BoundedAccepts2•”.

(d) M(〈M〉) does run in at most 2|〈M〉| steps, by (ii) above.

Putting together (a)–(d), we get M(〈M〉) 6= M(〈M〉), a contradiction.

5 Beating every O(.) simultaneously

Why do we say Theorem (D-tier quality Time Hierarchy Theorem) is a “D-tier” Time Hier-
archy Theorem? For one thing, it’s about specific functions 2n and 3n; but this is not hard
to generalize. The serious reason is that, contrary to first glance, it does not actually prove
L 6∈ TIME(2n). In fact, it does not even prove L 6∈ TIME(1.1n), the original goal.

Important. To see why Theorem (D-tier quality Time Hierarchy Theorem) does not prove
L 6∈ TIME(1.1n), recall that TIME(1.1n) is all the languages decidable in time O(1.1n). The
O(·) is important here. Theorem (D-tier quality Time Hierarchy Theorem) only shows that L
cannot be solved with running time literally at most 2n. The following would be a perfectly
consistent state of affairs:

• L cannot be decided by any TM M with running time TM (n) ≤ 2n.

• L can be decided by some TM M with TM (n) = 1000 · 1.1n, and hence L ∈ TIME(1.1n).

The catch here concerns “small input lengths”: 1000 ·1.1n ≤ 2n is not true for small n (specif-
ically, it fails for integers n < 12).

Exercise. Show that it is even consistent with the statement of Theorem (D-tier quality Time
Hierarchy Theorem) that L ∈ P.

6

CMU CS455

What we really want is an improved version of Theorem (D-tier quality Time Hierarchy
Theorem) that rules out, say, O(1.1n) running time. Achieving this lower bound against any
O(1.1n) running time is both important and moderately tricky. (It is one of the trickiest proofs
we study in 15-455.) Here is an idea that doesn’t work:

• Imagine we repeated the proof but using a decider B for BoundedAccepts10·1.1• (that
is, with time bound 10 ·1.1|w| instead of 2|w|). Tracing through the proof, we’d get some
language — call it L10 — that is still decidable in O(3n) time but is not decidable in
10 · 1.1n time. But 10 · 1.1n is still not as good as “any O(1.1n)”.

• Imagine we repeated the proof but using a decider B for BoundedAccepts100·1.1• . We’d
get a language — call it L100 — that is decidable in O(3n) time but not 100 · 1.1n time.
But 100 · 1.1n is still not as good as “any O(1.1n)”.

• We could similarly produce L1000, L10000, etc.; in general, for any big number C we
could get a language LC that is decidable in O(3n) time but not C · 1.1n time. But what
we really want is one single language L decidable in O(3n) time that is not decidable in
C · 1.1n time simultaneously for every C.

To see why our proof of Theorem (D-tier quality Time Hierarchy Theorem) isn’t good
enough, imagine that for the language L it constructs, there is an M deciding L with running
time TM (n) = 1000 · 1.1n. Why doesn’t the proof achieve a contradiction? The problem is
that the proof only tries to show a single input w where M(w) gives the wrong answer about
w ∈ L, namely w = 〈M〉. The trouble is, for all we know, this w could be very short, like
|w| < 12. Such a value for |w| is small enough that the running time of M(w) = M(〈M〉),
namely 1000 · 1.1|w|, is bigger than 2|w| (despite the fact that “intuitively”, 1000 · 1.1n feels less
than 2n). Thus point (d) near the end of Theorem (D-tier quality Time Hierarchy Theorem)’s
proof doesn’t hold, and we don’t get any contradiction.

The trick to improving the proof is to create “artificially longer” versions w′ of the string
w = 〈M〉 for which M(w′) is identical to M(w). No matter what kind of TM (n) = O(1.1n)
running time M has, once |w′| is large enough the inequality TM (|w′|) ≤ 2|w

′| will hold, the
sticking point (d) of the proof will be okay, and we will get the required contradiction.

6 C-tier quality Time Hierarchy Theorem

Theorem (C-tier quality Time Hierarchy Theorem). The proof of Theorem (D-tier quality Time
Hierarchy Theorem) can be upgraded to show that

• L ∈ TIME(3n);

• there is no (standard-alphabet) TM M deciding L with running time TM (n) ≤ O(1.1n).

Proof. We just need to prove the second bullet point. Suppose for the sake of contradic-
tion that there is some (standard-alphabet) TM M deciding L with running time TM (n) ≤
O(1.1n). The idea is that this will always be smaller than 2n for “large enough” n. Doing

7

CMU CS455

the math, TM (n) ≤ O(1.1n) means that there exist C, n0 ≥ 1 such that TM (n) ≤ C · 1.1n for
all n ≥ n0. Let n1 be large enough so that C ≤ (2

1.1)
n1 . Now setting N = max(n0, n1), we

conclude
n ≥ N =⇒ TM (n) ≤ (2

1.1)
n · 1.1n = 2n.

Similar to the previous proof, for any input w we conclude:

(i) M(w) gives the same answer as D(w).

(ii’) M(w) gives this answer in at most 2|w| steps provided |w| ≥ N .

Let w0 = 〈M〉. Since |w0| might not be at least N , we want to introduce “artificially longer”
versions of w0. For i = 1, 2, 3, . . . , let Mi denote a TM that consists of taking M and adding
i extra “useless” states at the end, meaning states that are never transitioned into. (For con-
creteness, you can assume that such a state qj writes back the symbol it reads, moves it head
right, and transitions back to qj . It hardly matters, since no state transitions into qj .) Let
wi = 〈Mi〉. The key points are:

• Mi behaves identically to M on every input;

• |wi| = |〈Mi〉| = |〈M〉|+ c · i = |w0|+ c · i for some fixed constant c.

(The second point here depends a bit on our precise TM encoding format. For the format
used in the Bevan universal TM, each extra useless state takes c = 12 extra symbols. Since
we’re technically encoding each symbol in Bevan’s alphabet by 4 bits, c should be 48.)

Thus the strings wi get longer and longer, but they all encode a TM that is “functionally
equivalent” to M . Now there is some large enough value for i, say i∗ = dN/ce, such that
|wi∗ | ≥ N . Thus item (ii’) above implies that

M(wi∗) takes at most 2|wi∗ | steps. ($)

Now we can get a contradiction almost identically to that in Theorem (D-tier quality Time
Hierarchy Theorem), by considering the input wi∗ = 〈Mi∗〉:

(a) M(〈Mi∗〉) = D(〈Mi∗〉), because of (i) above.

(b) D(〈Mi∗〉) 6= B(〈Mi∗ , 〈Mi∗〉〉), by definition of D.

(c) B(〈Mi∗ , 〈Mi∗〉〉) = Mi∗(〈Mi∗〉) provided Mi∗(〈Mi∗〉) runs in at most 2|〈Mi∗ 〉| steps, by
definition of “B decides BoundedAccepts2•”.

(c’) Mi∗(〈Mi∗〉) = M(〈Mi∗〉), and both computations take the exact same number of steps,
because Mi∗ is functionally identical to M .

(d) Mi∗(〈Mi∗〉) runs in the same time M(〈Mi∗〉) = M(wi∗) does, and this is indeed at most
2|wi∗ | = 2|〈Mi∗ 〉| steps, by ($).

Putting together (a)–(d), we get M(〈Mi∗〉) 6= M(〈Mi∗〉), a contradiction.

8

CMU CS455

7 B-tier quality Time Hierarchy Theorem

With this O(·) issue settled, we can move on to proving our B-tier Time Hierarchy Theorem,
Theorem (B-tier quality Time Hierarchy Theorem), which we repeat here for reference.

Theorem (B-tier THT, restated). Let f(n) be a clockable function with n2 log n ≤ O(f(n)). Then
there exists a language L such that

• L ∈ TIME(n2 · f(n) · log f(n));

• L 6∈ TIME(f(n)
log f(n)).

Proof. We mostly just need to repeat the proof of Theorem (C-tier quality Time Hierarchy
Theorem) and Theorem (D-tier quality Time Hierarchy Theorem), but with B being a decider
for BoundedAcceptsf(•) (rather than with the specific f(•) = 2• version). Since we are
assuming f(n) is clockable, Theorem (??) from the previous chapter tells us that B — and
hence L — is in TIME(O(n2 + log f(n)) · f(n)). For simplicity we can be wasteful and say
that n2 + log f(n) ≤ n2 · log f(n), and therefore we have proven the first bullet point in the
theorem, L ∈ TIME(n2 · f(n) · log f(n)).

We move on to the second bullet point, L 6∈ TIME(f(n)
log f(n)). We can prove this almost

exactly as in the proof of Theorem (C-tier quality Time Hierarchy Theorem); there we only
used that any O(1.1n) function is smaller than 2n for large enough n. In our general case
here, we can use that any O(f(n)

log f(n)) function is smaller than f(n) for large enough n.
There is one more technical detail. Looking carefully at Theorem (C-tier quality Time

Hierarchy Theorem), we find that we’ve only ruled that there is a standard-alphabet TM M

solving L in O(f(n)
log f(n)) time, whereas to truly say that L 6∈ TIME(f(n)

log f(n)), we need to rule

out an M solving L in O(f(n)
log f(n)) time using any (constant-sized) tape alphabet. But this

is not hard; we saw in Proposition (??) that an arbitrary-tape-alphabet M running in time
O(f(n)

log f(n)) can be converted to a standard-alphabet M ′ deciding the same language and run-

ning in time O(n2 + f(n)
log f(n)). But using our assumption n2 log n ≤ O(f(n)), we get that

O(n2) ≤ O(f(n)
log f(n)), so M ′ just has running time O(f(n)

log f(n)). But we ruled out standard-
alphabet TMs with this running time.

8 A specific language satisfying the THT

As mentioned, all the Time Hierarchy Theorems we have proven only show that a lan-
guage L satisfying the conditions of the theorem exists. It would be nicer to know a spe-
cific language L doing the job. For example, our C-tier quality Theorem (C-tier quality Time
Hierarchy Theorem) was already enough to show

∃L ∈ TIME(3n) \ TIME(1.1n).

9

CMU CS455

As promised, we will show that the specific language L = BoundedAccepts2• works. In
general, the language L = BoundedAcceptsf(•) will work for B-tier-type Time Hierarchy
Theorems (though there are some parameter details that are not worth getting into here).

Since we already showed last chapter (Theorem (??)) that BoundedAccepts2• ∈ TIME(3n),
it remains to show:

Theorem. BoundedAccepts2• 6∈ TIME(1.1n).

Proof. Consider the language L constructed in the proof of Theorem (D-tier quality Time
Hierarchy Theorem). We showed that it satisfies L 6∈ TIME(1.1n). But this was actually
somewhat sloppy; we could have actually showed it is not in TIME(1.9n), or even TIME(2

n

n).
Recall also from the proof that L could be named something like

Doesn’tBoundedAcceptSelf2• ;

more carefully, we can see that

L = {〈M〉 :M is a (standard-alphabet) TM such that

M(〈M〉) does not accept within 2|〈M〉| steps}.

Suppose now by way of contradiction that there is a TM B deciding BoundedAccepts2•
with running time O(1.1n). We will use it to construct a TM R that solves L in time O(1.21n).
This is indeed a contradiction, because as we said at the beginning of this proof, L is not even
in TIME(1.9n).

The algorithm R is straightforward: On input w of length n, algorithm R first interprets
w = 〈M〉 for some (standard-alphabet) TM M . (Validating the input here surely takes at
most poly(n) time, much less than O(1.21n) time.) Next, R copies the string 〈M〉, forming
the input x = 〈M, 〈M〉〉 for B; again, this takes minimal time, say O(n2). More importantly,
note that |x| ≈ 2n. (Perhaps 2n + O(1) due to punctuation, but probably literally 2n if we
dig into our encoding conventions.) Finally, R performs the code of B on x, and gives the
opposite answer.

Overall, it is clear that R correctly decides L. Further, its running time is poly(n) +
O(1.12n). Here O(1.12n) is the running time of B on an input of length 2n. Finally, poly(n) +
O(1.12n) ≤ O(1.21n), as claimed, giving the desired contradiction.

10

	Sample consequences of the Time Hierarchy Theorem
	THT: many tiers of quality
	Turing's Theorem
	D-tier quality Time Hierarchy Theorem
	Beating every O(.) simultaneously
	C-tier quality Time Hierarchy Theorem
	B-tier quality Time Hierarchy Theorem
	A specific language satisfying the THT

